
Technical Case Study: Advanced Retail Forecas8ng Using AI 
Introduc)on:  

We were approached in the summer of 2021 by a large retail chain. Their objectives were to: 
enhance their current forecasting methodology to significantly reduce waste and increase 
profits.  

Given the scale, with a spread across 500 unique item ranges in over 1,000 stores, even a 
small increase in the accuracy would account for an enormous decrease in the amount of 
waste and the enormous increase in profit, by reducing out of stocks, and increasing customer 
retenEon. 

Background:  

Previously, the retail chain utilized the triple exponential smoothing algorithm for forecasting. 
Despite already producing decent results, the system was not without its flaws. It struggled to 
consider more granular variables that influenced customer buying paLerns such as the 
weather and promoEonal periods. It also struggled in the seasonal periods where buying 
paLerns fluctuated far from the mean. 

The Challenge:  

We had to design a solution that: 

• Considered more specific variables influencing purchase behaviours. 
• Showcased heightened accuracy for forecasts, especially with relation to seasonal 

sales. 
• Operated with minimal human intervention. 
• Efficiently produced a daily quota of 7 million forecasts (500,000 unique Store Item 

pairs for 14 days in advance) in under 4.5 hours. 
• Enabled prompt forecasting for new item introductions or store additions. 
• Executed 7 million daily forecasts with acceptable server costs. 

The Solu)on:  

Our strategy pivoted around powerful AI agents built for speed and scale.  During our 
discovery, we found that we would need to build models on an individual Store/Item level to 
maximise accuracy. Bananas in a store in Central London would be affected differently by the 
variables as Bananas in a store in Liverpool, for example.  

To capture this effecEvely, 500,000 individual AI models would need to be generated and 
queried individually. We could do this using this tool, as well as accurately forecasEng with as 
liLle as 14 data points for this specific use case, which would minimise the downEme for new 
Items/Stores. 

  



Key A9ributes:  

Within our discovery phase, we evaluated the most important attributes for this client, the 
system is infinitely configurable for different variables as needed.  Due to the need for 
individual Store Item Pair models, we regularly had less than 700 days of Sales Data. 
Consequently, we could not select more variables than this as we ran the risk of having models 
that are too sparse for the number of variables. 

Addressing Time Series:  

Once we had chosen our aLributes and seLled on a tool that enabled us to fulfil the 
forecasEng within Eme demands, we had to find a way to eliminate the Eme series’ factor. A 
Bot Named SUE could not take a date as an input, and as Eme series is a criEcal element that 
impacts retail sales, we could not accurately train the models with sales data that was over a 
few months old as customer buying paLerns change year upon year. The factors that influence 
buying paLerns for specific Item’s won’t change as much as the total Sales for the specific 
Item.  

To get around this, we used a combinaEon of Sales Per Hour, along with a Trend.  We’d reduce 
the final Sales number for a day to a Sales Per Hour figure, and then we would cross reference 
this vs the average Sales Per Hour of the previous month to get a Sales Per Hour Modifier. 
These modifiers were the forecasEng output of the ABNS Tool. This way, we forecast the 
change in Sales Per Hour compared to the previous month’s average.  

Then we modify the previous month’s average by the modifier and the mulEple by the number 
of hours the Store is open to get the final Sales forecast.  Solving the Eme series issue, being 
able to adjust for changing Store opening hours as well as providing more accurate seasonal 
adjustments. An example of this may be as follows: 

We are predicEng 22nd December. The previous months trend may be 10 Sales per hour. The 
modifier is high, being this close to Christmas, so let’s say this is 3.1 – that’s predicEng 31 Sales 
per hour. We now look at the number of hours the Store is open for. If this is 14 hours, then 
we’d forecast 434 Sales for that day. 

Out of Stock Challenge:  

Due to the relaEvely small number of data points we had for each Store Item Pair, it was 
important that were able to use as much of this data as possible.  Let’s say for example we 
had 30 days of Sales data, but of those 30 days, the item went out of stock on 10 of them. We 
have suddenly lost 30% of our available data as we can’t include the out of stocks in the 
training as it would not be reflecEve of what we should order in (an item sells out as 11am, 
but the Store is open Ell 10pm – we don’t want to order in the amount that caused us to sell 
out early). If we order too few, we lose out on Sales.  

To maximise the amount of data we must train the models, and to minimise the impact of out 
of stocks, we converted any Sales where the item went out of stock to an esEmated Sales.  We 
also didn’t do this linearly; we implemented a soluEon that looked at the bell curve data of a 
specific item and extrapolated from there. Different Items have different Sales curves. If Bread 
had sold out at 2PM, there is a different curve to if Cheesecake had sold out at 2PM (The 
majority of bread sales are made early, then tail off. Cheesecake has a different paLern). 



Using the bread sold out at 2PM example, we would look on the Bell Curve to see, on average 
what percent of total sales for bread had been made at this point. If it was 90%, then we’d 
increase the actual sales by 10%, and use that as the Converted Sales, from which we’d 
calculate the SPH modifier as discussed earlier. 

PlaAorm & Automa)ons:  

The whole soluEon was implemented within OutSystems. This enabled us to build extremely 
quickly and integrate with APIs seamlessly. We used a combinaEon of Timers and LightBPT’s 
(Lightweight processes that could run on 20 threads in parallel) which enables us to batch 
process the number of forecasts within the Eme limit, as well as ingesEng new data each day, 
running housekeeping, generaEng new models. AutomaEng the whole process as quickly and 
efficiently as possible.  

OutSystems also enabled us to build front end screens where the data could be analysed, 
informaEon imported (such as Historical Last Time of Sale Data and Bell Curve Data).  Despite 
being built to be as automated as possible, we also built it to be extremely configurable. Using 
Site ProperEes that stored values such as the forecast length, the length of the Trend and the 
Warehouses we wanted to forecast for.  

We also enabled the removal of certain data periods for Stores where the Sales PaLerns would 
not generally be reflecEve of Sales PaLerns going forward such as Emes during the COVID 
Lockdown, or specific Store issues such as roadworks happening nearby which would impact 
Sales figures for a short Eme. 

Conclusion:  

Our solution delivered an advanced forecasting system, characterised by its pinpoint accuracy 
and efficiency. The system excels in automation yet remains adaptable. Its optimised data 
processing ensures timely and accurate forecasting, even in the face of challenges like time 
series complexities and out of stocks. This robust system, combined with daily data validation 
and housekeeping, has helped in the retailer's journey toward minimised waste and enhanced 
profitability. 

 


