
The Consummate Component Checklist
for Developers
So you’re thinking about creating components? That’s great! Follow these practices to
ensure great experiences and to foster reusability.

Focus on the main use cases

API Design

LifeCycle Events (Mobile)

CSS and JavaScript

Implement 20% of the features that cover 80% of the use cases.

Limit the number of parameters and offer great default values
Ensure that your parameters only cover the most common use cases. Evaluate if your use case requires
mandatory parameters. If there are optional parameters, offer the best default values for them.

Use an advanced option to cover other use cases
Use JSON as an extensibility mechanism for the extra parameters not covered in the main use cases. List the
extra options in the JSON parameter description.

Consider the scenarios where you should define variable default values with
the OnInitialize event
Prevent poor user experiences when navigating to the previous screen (back navigation).

Prevent memory leaks with the OnDestroy event
Ensure that everything that is initialized (for example, variables and event listeners) is destroyed.

Use the OnRender event for components depending on DOM rendering
Define a handler for the OnRender event to ensure that you only manipulate DOM elements when
they are ready.

Use style classes and avoid the inline style attribute
Take advantage of expressions in style class properties (mobile) or the class attribute (web) instead of
using the "style" attribute to improve performance and simplify customization.

Allow customization by avoiding specific CSS styles
Avoid the !important CSS tag, since using it will override custom CSS. Also, avoid using styles and
elements that aren't easily overridden.

Write CSS Selectors in JavaScript related to a runtime ID
Implement CSS selectors, in JavaScript, specific to a unique instance by using its runtime ID to enhance
reusability instead of using only classes that would affect several elements.

Allow extensibility through JavaScript APIs
Provide a set of JavaScript functions so others can extend component functionality. Ensure access to
created JavaScript Objects.

Add notes to complex code
Write a simple and brief description explaining the code that is visible in an action flow. This is key to
making it easy to review and improve.

Add comments inside Expression Editors and JavaScript Nodes
Use comprehensive comments to describe specific and important elements of the code that might
not be easily understood.

Add labels to all nodes
Provide good labels to ensure that everyone can understand the functionality of every node by simply
reading them. This will improve the readability of the application flow.

Give meaningful and PascalCase names
Apply names and descriptions to applications, modules, screens, blocks, variables, actions, events and
placeholders. This will help people understand the purpose of your component and how to use it.

Set all icons for readability
Apply the same icon, or variations, to applications, modules, blocks and actions. Other developers will
see the icons in the development environment and relate them to your component.

Use If widget for good previews
Set the condition to False and add your code to the False branch. Create a good preview in the True
branch of the If widget.

Use Service Studio’s exclusive CSS tags to improve preview
Adapt the preview during development time by using the -servicestudio- tag.

Place sample content inside placeholders
If content is mandatory for a component to work as expected, add default content to its placeholders.

Test performance to peak conditions
Set up a scenario as close as possible to a real one and use the peak number of records or conditions to
see how the component performs.

Ensure scalability by supporting multiple blocks
Test multiple blocks in the same screen as well as concurrency scenarios. Note: This only applies to blocks.

Implement security mechanisms in your component
Consider ciphering local storage data and implement server-side validation.

Accessible and Easy Code

Visual Cues: Names, Descriptions and Icons

Preview: the Developer Experience

Non-Functional Requirements

Want more?
Get the Complete Guide to Creating Components!

