
13 Commandments
The

of DevOps

Today, DevOps is a trending buzzword in the IT landscape. Rather than being a skill description for a position you can hire in 
your IT department or a specific tool you can purchase and install to start being “DevOps-compliant”, DevOps is, above all, a 
cultural-shifting paradigm that impacts the main pillars of an organization (People, Processes and Tools.) Its ultimate goal is 
adding increased value to the customer and enabling organizations to react faster to change in the business.

Follow these principles and pratices and you will be much closer to achieving a DevOps-focused mindset in your organization.

Define the expected impact of developing an application or feature upfront. Consider how this will affect areas such 
as network configuration, security, and architecture. For instance, accounting for the growth of concurrent users or 
transaction count ensures that your infrastructure capacity is fit for the workload increase.

Mimic production as closely as possible. Validate your apps against production-specific constraints early in 
development rather than dealing with them after the rollout. Bootstrap production data, simulate integrations, 
and test on target user devices.

Automating your infrastructure provisioning activities will definitely boost your development and testing speed. 
Technologies such as Infrastructure as Code on top of virtualized servers or cloud providers can be a huge help.

Regularly enforce a continuous integration approach and enforce the consistency of ongoing developments over 
the existing codebase. Run automated test scripts to pinpoint any breaking changes for developers to act upon 
them earlier in the development process.

Use a tool to manage the full lifecycle of anything that impacts your applications, from defects up to business 
requirements. Tracking every action performed along the way lets you have full traceability from origin, all the way 
down to the application version that implemented it.

Having a disaster recovery plan is not enough to avoid disaster. Practice failure scenarios on top of a self-healing 
infrastructure. Plan for simulations during development cycles, as well as in production during off-peak hours, 
to guarantee the effectiveness of your disaster recovery plan.

Validate impact upfront

Immediate provisioning

Anticipate failure

Develop based on production

Continuously integrate your code

Trace all changes

Plan

Develop 
and Test



Collaborate! Break the silos!

Identify trends and deviations

Amplify feedback loops

Measure everything
Measure your apps’ impact on your business and customer base once they reach production. Extract metrics from 
multiple sources and build dashboards with a real-time picture of your application activity and customer experience. 
Do it also while in development to identify potential risks and optimization points in advance.

Leverage the metrics collected from your applications and infrastructure to establish a baseline pattern for your 
applications. Identify deviations from the expected behavior and proactively address issues to reduce response times.

Come full circle by impacting the focus and priorities of each stakeholder. Make sure all collected feedback is shared 
among everyone in the organization and incorporated back into the development pipeline.

Ultimately, DevOps is all about bridging the gap between development and operations. Promote a continuous collaboration 
effort through informal channels, such as ChatOps, in order to add value to the business and quickly respond to change. 

So go ahead and tear down that wall!

The sooner you reach production, the sooner you can start adding value to the business. Compressing delivery 
cycles through process automation and scope minimization will help you increase the speed of delivery of new 
features with reduced risk.

Compress delivery cycles

Create a deployment script where you define all steps of the deployment process for each application, including 
rollback procedures. Apply it in pre-production environments and validate the deployment process to ensure 
reliability and consistent behavior when your application reaches production. Automate your script execution to 
increase your efficiency even further.

Orchestrate deployment process

Deploy

Monitor

Register all development configuration activities in a centralized shared repository. This ensures they are later 
applied in the deployment process to subsequent environments. Don’t let these changes be forgotten only to be 
recalled when operational errors start piling up.

Register your configurations


